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We present a novel phase-shifting interferometry technique for 
investigations of the unsteady kinetics and the formation of spatio-
temporal patterns during the protein crystallization. We applied this 
technique to the ferritin crystal growth, which is controlled by the 
rate of supply of material. We find strong fluctuations of growth 
rate, step density and step velocity due to passage of step bunches. 
The fluctuation amplitudes decrease with higher supersaturation and 
larger crystal size, as well as with increasing distance from the step 
sources. Since these are parameters affecting the solute supply field, 
we conclude that fluctuations are rooted in the coupling of the 
interfacial processes of growth to the bulk transport in the solution.  
Analysis of the step velocity dependence on local slope indicates a 
very weak interaction between the steps. Hence, in diffusion-
controlled systems with non-interacting or weakly interacting steps 
the stable growth mode is that via equidistant step trains, and 
randomly arising step bunches decay. 
 
Keywords: ferritin; protein crystallization; interferometry; kinetic 
fluctuations; step bunching 
 
 
1. Introduction 

Protein crystals are predominantly used for determinations of the 
atomic structure of the protein molecules (Burley et al., 1999). 
Unsteady growth conditions and time-dependent impurity 
incorporation into growing crystals lead to striae and deterioration of 
the crystal quality (Chernov, 1984). Besides, inhomogenuities arise 
even under steady external conditions if intrinsic kinetics 
instabilities, such as step bunching, occur (Bauser, 1994); bunching 
has been shown to cause growth striations in lysozyme crystals 
(Vekilov & Rosenberger, 1998a). To investigate the mechanisms 
leading to step bunching, an in-situ technique with high spatial and 
temporal resolution is required.  Michelson interferometry was 
successfully applied to the study of growth kinetics and surface 
morphology of inorganic crystals grown from solutions (Chernov et 
al., 1986; Kuznetsov et al., 1987; van Enckevort, 1984) and protein 
crystals (Kuznetsov et al., 1995; Monaco & Rosenberger, 1993; 
Vekilov et al., 1993). While inferior in spatial resolution to atomic 
force microscopy, this technique is non-intrusive and allows imaging 
and monitoring of entire crystal faces.  The development of phase-
shifting interferometry, discussed below, has significantly increased 
the depth and time resolution (Onuma, 1994). 

The kinetics instabilities and step bunching during the 
crystallization of the protein lysozyme were studied using a high-
resolution interferometry technique (Vekilov et al., 1995a). It was 
concluded that fluctuations are intrinsic and result from the coupled 
bulk transport and interfacial kinetics processes (Vekilov et al., 
1996). According to the mechanism put forth in these works, the 
strongest instabilities occur when the growth proceeds under equal 
weights of the transport and kinetics in the overall rate control.  
Hence, shifts towards purely kinetic, or, conversely, purely diffusive 
regimes should lead to higher stability.  A numerical model of 
coupled bulk transport and nonlinear interfacial kinetics was 

developed and evaluated with parameters taken from lysozyme 
crystallization, dominantly controlled by interfacial kinetics (Lin et 
al., 1996; Rosenberger et al., 1999; Vekilov et al., 1997); the model 
quantitatively reproduces the experimentally observed unsteadiness. 
Changing the system parameters toward stronger kinetics control 
decreases the fluctuation amplitudes, while stronger step kinetics 
nonlinearities (step-step interactions, asymmetry for incorporation 
from the top and lower terraces (Ehrlich & Hudda, 1966; Schwoebel 
& Shipsey, 1966), stochastic generation of new crystalline layers, 
etc.) increase them.  Further experiments with lysozyme utilizing 
forced solution flow show that faster convective solute transport, 
which shifts the working point towards kinetic control, resulting in 
reduced fluctuations (Vekilov & Rosenberger, 1998b).  

If the rationale, developed based on lysozyme data, holds, in 
crystallization systems with dominant transport control, such as 
ferritin, a shift of the working point toward slower transport should 
dampen the fluctuations.  Ferritin is a suitable system for studies of 
non-linear dynamics—the molecular mechanisms of ferritin 
crystallization and defect formation has been elucidated to a certain 
detail using atomic force microscopy (Yau et al., 2000a). Thus, the 
aim of the investigations discussed here is to test if ferritin growth is 
steady or unsteady, and in the latter case, to experimentally study the 
origin of kinetics unsteadiness.  We search the answer to this 
question in the dependencies of the amplitude of local slope 
fluctuations on the parameters affecting transport to the interface: 
supersaturation, crystal size and location on the crystal faces. For the 
experiments we developed a novel phase-shifting interferometry 
setup, which differs from those described in the literature by the 
different optical and image processing schemes employed. 
 
2. Materials and methods 
 
2.1. Phase-shifting interferometry 
 
A schematic diagram of the phase-shifting Michelson interferometer 
is presented in Figure 1. The linearly polarized light from a λlaser = 
6328 nm He-Ne laser passes through a spatial filter consisting of a 
short-focus objective lens, a 10 µm pinhole and a long focus 
objective lens.  In this way, specs are filtered out, the beam is 
broadened to a ratio equal to the ratio between the two focal lengths, 
and an area of practically uniform intensity in the center of the 
broadened beam is achieved (Chernov et al., 1986).  Collimation 
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Figure 1 
Schematic of the experimental setup of phase-shifting interferometry.  
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of the output beam is achieved by fine-tuning the position of the 
long-focus lens along the optical axis.  To minimize parasitic 
reflections from excess laser light in the optical pathway, a variable 
aperture diaphragm is placed after the spatial filter assembly that 
limits the beam width to 7 mm.   

The beam is then divided into two arms by a beam splitter (Oriel).  
The surface of growing crystal reflects one of the arms, while a high 
flatness mirror (Newport) is used in the reference arm.  As 
emphasized below, uniform intensity along the cross section of the 
two beams is a crucial requirement for quantitative surface 
characterization.  This is achieved by using high quality optical 
components, and by careful alignment of all optical components 
using mechanical mounts with micrometer-scale adjustments.  
Ultimately, the depth resolution of the method is determined by the 
flatness of the reference mirror.  While minimal roughness mirrors 
that ensure non-uniformities of < 5 Å on a 1 µm scale are easy to 
acquire, the best serially produced mirrors have a guaranteed flatness 
of “1/20 of the wavelength”.  By placing two such mirrors in the 
interferometer and processing the data as described below, we found 
this to mean a wavy surface with characteristic amplitudes of about 
5–10 nm and a wavelength in the range 10–100 µm.  

To introduce the phase shift, we placed a liquid crystal variable 
retarder (Meadowlark Optics) in the reference arm.  This “phase-
shifter” operates by discretely changing the applied voltage to an 
element containing nematic liquid crystals to vary their refractive 
index.  As a result, the optical pathway of the reference beam is 
varied, and this shifts the phase of the interferograms.  

The interference pattern is magnified by a Leica MZ9 microscope.  
The variable zoom of the microscope allows magnifications in the 
range 12 × to 120 ×.  The lower zooms were used during alignment 
of the optical subsystem; the highest zoom ratio was employed for 
data collection.  An aperture with a radius of ~ 1mm is placed in the 
focal plane of the microscope objective to block unwanted 
reflections from surfaces in the optical pathway.  This diaphragm is 
another crucial component for reliable quantitative data.   

The images are acquired by a CCD video camera (Kodak 
Megaplus) with a 1024 × 1024 resolution, 10 bit B&W acquisition 
(corresponding to 1024 levels of gray), and frame rate of 4 frames/s. 

The microscope and all optical components are mounted on a 
floating optical table. To minimize thermo-mechanical dimensional 
changes of the two arms of the interferometer that could be 
misconstrued for growth, the optical table is placed into a styrofoam 
enclosure with a clear vinyl shroud as a front access port. The air 
temperature in the enclosure is stabilized to within 0.1°C, which 
requires stabilization of the laboratory temperature within 1°C 
(Vekilov et al., 1995a). 
 
2.2. Solution preparation and growth cell 
 
The crystallizing solution contains between 2–2.5 mg/mL horse 
spleen ferritin purchased from Sigma and purified to reduce the level 
of the most common impurity, the covalent dimer of ferritin, to 
below 5% (Thomas et al., 1998). We use 2.0 % (w/v) = 0.1 M 
CdSO4 as a precipitant and 0.2 M sodium acetate buffer 
(NaCH3COO) to fix the pH at 5.05.  The supersaturation is 
calculated as σ = ln(γC/γeCe) ≈ ln(C/Ce), where C is the 
concentration of the solution, Ce = 35 µg/mL (K. Chen, unpublished) 
is the solubility.   

A 10 µL droplet of crystallizing solution is placed at the center of 
a Teflon plate, which is then covered and sealed to prevent solvent 
evaporation.  After several crystals nucleate (1-3 days), this plate is 
transferred to the bottom of growth cell, and additional 35 µL of 
crystallizing solution are added.  The drop is covered by a glass slip, 
resulting in the formation of a liquid bridge between the cell bottom 

and the glass cover. To minimize unwanted interference fringes, the 
cell body is designed so that the cover glass is tilted from the 
horizontal plane.  The temperature of the solution in the growth cell 
is stabilized to 23 ± 0.01°C by a thermoelectric (Peltier) cooler. A 
thermocouple, embedded in the cell holder, measures the
temperature and is connected to the controller of the thermoelectric 
cooler (Marlow Industries). The heat from the thermoelectric cooler 
is dissipated to cooling water circulating through the cell support. 
The cell support can be tilted up to 30° about two horizontal axes to 
align a chosen crystal face normal to the incident beam.  

A small mirror is attached atop the cell holder. The intensity 
recording from this mirror allows us to register dimensional changes 
within interferometer and uncontaminate the signal due to shifts of 
the growth of the investigated crystal face (Vekilov et al., 1995a). 

Under the chosen conditions, the ferritin crystals are always 
faceted by octahedral {111} faces.  Typically, 2-10 crystals form in a 
droplet and sediment to the Teflon bottom driven by gravity.  They 
continue to grow and fill the micro-voids in the Teflon substrate; as a 
result, the crystals are firmly attached to the cell bottom.  Such firm 
attachment is necessary for a successful alignment of the crystal face 
perpendicular to the object beam of the interferometer.   

 
2.3. Data collection and processing 
 
We employ a five-step phase-shifting algorithm.  A sequence of five 
interferograms is recorded and digitized.  In the sequence, the 
interferograms differ by a π/2 optical phase shift, introduced into the 
reference beam between each of sequentially recorded 
interferograms.  For this type of data collection, the computer 
sequentially saves an image to the random-access memory, triggers a 
change in the voltage to the phase-shifter pre-determined by the 
calibration routine discussed below, saves another image, and so on.  

To ensure that the phase-shifter introduces phase variations of π/2 
between the recorded interferograms, a correlation between the 
applied voltage and the introduced retardation is established.  For 
this calibration, we placed the liquid crystal element of the phase-
shifter between a pair of crossed polarizers and determined the 
intensity transmitted by the phase-shifter as a function of the applied 
voltage.  The minimum and maximum in transmission correspond to 
phase shifts 0 and 2π, respectively; the voltages required for the 
other phase shift values were determined by interpolation on the 
transmitted intensity axis.  With a properly calibrated phase-shifter, 
the unwrapped and the differential phase and surface height profiles, 
see below, do not exhibit any traces of the interference fringes.   

In each of the five interferograms, the interference intensity at a 
point (x, y) is described by  

]),(cos[2),( crcr ii yxIIIIyxI δφ +++=               (1) 

where Ir and Ic are the intensities of the reference and crystal beams, 
respectively.  We split the phase difference into two components: 
φ(x, y) is the phase difference attributed to the deviations of the 
crystal surface from ideally flat and parallel to reference mirror, 
while δi is the phase difference introduced by the phase-shifter. The 
phase shift δi takes on five discrete values: 

δi = 0, π/2, π, 3π/2, 2π;        i = 1, 2, 3, 4, 5               (2) 

Eq 1 can be solved for the phase difference φ(x, y): 
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with each I i =  Ii(x, y). This phase distribution is stored as a grayscale 
image. 
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The resulted distribution of phase values has discontinuities of 
magnitude π due to the nature of arctangent function.  The phase 
calculation routine introduces truncation errors around the 
discontinuities–neighboring points that are likely to possess similar 
phases are assigned to different domains.  To reduce these errors, we 
employ a “salt-and-pepper” filter, which compares the phase value at 
each pixel with the average of the eight neighboring pixels and if the 
difference is greater than 3π/4, replaces the original value with the 
average.  The final phase distribution is then obtained by 
unwrapping the phase to remove the π discontinuities. 

The calculated phase is related to the crystal surface height h(x,y): 

λ
πφ ),(4

),(
yxnh

yx =                                 (4) 

where n is the refractive index of the protein solution and λ is the 
laser wavelength.  Using this expression we reconstruct the 
microscopic morphology relief of the growing crystal surface. 

For rectangular sections of the surface where the local slope does 
not change sign, we obtain a differential image by subtracting the 
average slope.  The differential images clearly reveal the local slope 
variations, i.e., step bunching. 

The phase-shifting interferometry technique discussed above was 
applied to monitor the dynamics of steps during the growth of 
crystals of the protein ferritin. Figure 2 shows the morphology of 
(111) faces of two ferritin crystals of sizes 200 µm and 470 µm.  
Figure 2a–e presents five interference images of the growing crystal 
surface collected with a phase shift increasing by π/2 between two 
neighbors in the sequence.  The first and fifth frames appear 
identical, because of the accumulated 2π shift between them.  With 
the chosen magnification of the optical system, each pixel in an 
image corresponds to 1 × 1 µm2 area of the crystal surface.  The time 
taken to capture five-image sequence is about 1 s. Because the 
tangential growth rates of ferritin do not exceed the value of 40 nm/s 
in our experiments, fringes do not move from one pixel to another 
during this time. 

The “phase-wrapped” image calculated using Eq 1 is shown in 
Figure 2f, g. The gray scale is proportional to the surface height. The 
discontinuities result from the calculation algorithm based on the tan-

1 function and correspond to a height difference of λlaser/4n; n = 
1.3320 is the refractive index of the solution, largely determined by 
its acetate and CdSO4 components (Fredericks et al., 1994) and 
measured as in (Petsev et al., 2000).   

A second data collection routine is based on the intensity of the 
interference image at up to 10 locations recorded over periods of 
several hours with a time resolution of 1 s. The traces are processed 
to obtain the values of normal growth rate, local slope and step 
velocity, as described earlier (Vekilov et al., 1995a).   
 
3. Results and discussion 
 
3.1. Phenomenology of the time-dependent kinetics 
 
During the growth of ferritin crystals the growth layers are always 
generated by 2D-nucleation; for reviews on this and alternative 
mechanisms see, e.g., (Malkin et al., 1996; Vekilov & Alexander, 
2000).  For small crystal sizes and supersaturations σ < 3, the 
distribution of 2D-nuclei is uniform across the whole face and the 
face remains flat on a macroscopic scale as the crystal grows.  For 
higher supersaturations and crystals larger than 100 µm, 2D-
nucleation localizes at the facet edges and corners.  Numerical 
modeling of diffusive-convective transport of crystallizing proteins 
has linked this localization to higher interfacial supersaturation at the 
edges (Lin et al., 1995; Lin et al., 2001). Furthermore, the model 
calculations showed that the nonuniformity in interfacial 

supersaturation increases with the size of the crystal and the bulk 
solution supersaturation.  

Figures 3a–c show the time traces of the normal growth rate R, the 
local slope p, and step velocity v recorded at the marked location 
near the facet center in Figure 2g at σ = 4.3.  R, p, v fluctuate by up 
to 100% of their respective average values.  The fluctuations of local 
slope, which is proportional to the step density, indicate that the 
unsteadiness occurs through the formation of patterns of lower and 
higher step density, step bunches.  In order to analyze the 
fluctuations dependencies on different factors such as 
supersaturation, crystal size, location on the facet, we use a Fourier 
decomposition of the three time traces.  Earlier work has shown that 
the Fourier frequencies, characterizing the fluctuation time scales, 
and the Fourier amplitudes, corresponding to the deviations from 
average values of the respective kinetic variables, are reproducible 
characteristics of the unsteady behavior and only depend on the 
external conditions (Vekilov et al., 1996). We use the Fourier 
transform in the form 

∑ 
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where Am, 2πm/T = fm and ϕm are the m-th (m = 0, 1, …) Fourier 
amplitude, frequency and phase, respectively, T is the total length of 
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Figure 2 
Typical morphology of a (111) face of a ferritin crystal. (a–e) A sequence of
five interferometric images from the surface of ferritin crystal recorded with a 
phase shift of π/2. (f, g) The phase-wrapped images. The difference in height 
between the brightest and darkest pixels is λ/4n = 0.119 µm. (f) σ = 4.0, (g) σ 
= 4.3. +, locations of layer generation; ×, locations of growth kinetics 
monitoring; solid line indicates locations of surface features quantification, 
discussed further in the text. 
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the monitoring period.  All Am’s have the dimension of the growth 
rate R and A0 equals the averaged growth rate, Ravg. The Fourier 
spectra of the time traces of local slope p(t) and step velocity v(t) are 
calculated in an equivalent fashion.  Figures 3d–f present the 
normalized Fourier spectra A(fm)/A0 of R(t), p(t) and v(t).  The 
Fourier frequencies are inversely proportional to the characteristic 
time scale ∆t of the fluctuations.  
 
3.2. Step-step interactions 
 
Figures 3d–f show that the Fourier spectra for R, p, and v are similar.  
In particular, the R and p spectra reach their maximum amplitudes at 
the same frequency f = 0.001 s-1, which corresponds to a fluctuation 
with ∆t ≅ 17 min. Since the Fourier spectra of p directly reflect the 
step bunching, we will use only these spectra in the further 
considerations.  

As shown in Figures 3a–c, the fluctuations are rather periodic. 
However, there appears to be no correlation between the fluctuations 
of the slope and the step velocity.  For further insight, we apply to 
following considerations.  The dependence of the step velocity on 
the local slope and the reduced concentration (C – Ce)Ce

-1 can be 
expressed in a very generic form as (Vekilov et al., 1995b) 

kp

CCCb
v

+
−

=
1

/)( eestep                                 (6) 

where bstep is an effective step kinetic coefficient and k is a 
parameter characterizing the step-step interactions.  For non-
interacting steps, k = 0; for strongly interacting steps such as those in 
lysozyme growth, where the incorporation into steps is preceded by 
slow diffusion through the solution bulk and the terraces between the 
steps, k is in the range 1000–2000 (Vekilov et al., 1995b; Vekilov et 
al., 1996); for the growth of inorganic phosphates with a similar 
growth mechanism, values of k are ~1000 (Booth et al., 2002; 
Vekilov et al., 1992). 

Prompted by the form of the v(p) dependence in Eq 6, we plot the 
reciprocal step velocity 1/v as a function of the local slope p for a 
trace recorded over several hours at the location near the center of 
facet in Figure 2g. To extract the deterministic link between v and p, 
we calculate the least square fit of the data to a straight line.  From 
extrapolated intercept of this line with the ordinate axis and the 
known value of (C – Ce)/Ce = 71, we obtain the value of bstep = 4.8 ×  
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Figure 3 
(a)–(c) Time traces of the normal growth rate R, the local slope p and the step 
velocity v recorded during growth of ferritin crystal at supersaturation σ = 
4.3.  (d)–(f) corresponding normalized Fourier spectra, for definitions, see 
text; in (d)–(f), the zero-th normalized amplitude, A/A0 = 1 at f = 0 is omitted. 

10-8 cm/s. The step kinetic coefficient β = bstep/ΩCe = 11 × 10-4 cm/s 
(Ω is the crystal volume per molecule, ΩCe = 4.2 × 10-5) is 
somewhat higher than the value of β = 6 × 10-4 cm/s obtained using 
AFM (K. Chen, unpublished).  From the slope of the fit, we calculate 
k = 32 and kpavg ≈ 0.35.  This low value of k indicates a very weak 
interaction between steps, i.e. the diffusion supply fields around the 
steps do not overlap. This makes the ferritin system quite different 
from lysozyme, which is characterized by strong interaction between 
steps, which results in dependence of step velocity on slope (Vekilov 
et al., 1995b).   
 

3.3. Variations of the fluctuation patterns with the external conditions 
 
Figure 4 presents the Fourier spectra of slope traces recorded at two 
locations on the facet shown in Figure 2g.  The maximum values of 
the Fourier amplitudes are shown on the plots. Comparison of the 
spectra shows that the fluctuation amplitudes decrease as 
supersaturation increases and are greater near the facet edges than at 
the facet center.  Note that the lower fluctuations at the facet center 
and at the higher supersaturations occur despite being accompanied 
by a higher average vicinal slope.  This is a remarkable observation, 
because the average vicinal slope has been identified as a major 
destabilizing factor for equidistant step trains (Chernov et al., 1993). 
We conclude that the mechanism leading to decay of the fluctuations 
is sufficiently strong to overpower the average slope effects.    

To understand the higher p values at the facet center than those at 
the facet periphery, see Figure 2g, we note that this interface shape is 
a result of the facet morphology response to non-uniform nutrient 
supply (Chernov, 1974), discussed in detail for the case of protein 
growth in (Lin et al., 1996; Vekilov et al., 1995b).  The non-
uniformity in local step density compensates non-uniformity in 
interfacial supersaturation and step velocity. As a result, the normal 
growth rate R retains uniformity across the facet and the 
macroscopic flatness of the facet is preserved.  

If we compare the steepest segments of a step train away from the 
crystal edge to the shallowest close to the edge, for instance along 
the line in Figure 1g, we would find a ratio of at most two.  This 
ratio equal the ratio of the interfacial concentration of ferritin at the 
two locations, calculated in ref (Lin et al., 2001), i.e., the slope non-
uniformity is completely determined by the surface concentration 
non-uniformity. This is in sharp contrast to findings with lysozyme, 
where a 10% surface concentration non-uniformity results in a 4–5× 
steeper slopes (Lin et al., 1996; Vekilov et al., 1995b). The strong 

 

0

0.1

0.2

A
/A

0

0 0.001 0.002
0

0.1

0.2

A
/A

0

Fourier Frequency f [s-1]
0 0.001 0.002
Fourier Frequency f [s-1]

(a)

(d)

(c)

σ = 3.0 σ = 4.3

ed
ge

ce
nt

er

(b)

240
A

A

0

max .= 080
A

A

0

max .=

110
A

A

0

max .= 070
A

A

0

max .=

0

0.1

0.2

A
/A

0

0 0.001 0.002
0

0.1

0.2

A
/A

0

Fourier Frequency f [s-1]
0 0.001 0.002
Fourier Frequency f [s-1]

(a)

(d)

(c)

σ = 3.0 σ = 4.3

ed
ge

ce
nt

er

(b)

240
A

A

0

max .= 080
A

A

0

max .=

110
A

A

0

max .= 070
A

A

0

max .=

 
 
Figure 4 
Fourier spectra of traces of the local slope p for the crystal of a 470 µm size 
shown in Figure 2g.  (a) σ = 3.0, monitoring location at the facet edge, pavg = 
0.006; (b) σ = 3.0, monitoring location near the facet center, pavg = 0.008; (c) 
σ = 4.3, edge, pavg = 0.012; (d) σ = 4.3, center, pavg = 0.014. 
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enhancement of the surface morphology response was attributed to 
the strong step-step interaction in lysozyme; the observations with 
the weakly interacting steps on ferritin lend strong support to this 
mechanism.   

We calculated the Fourier spectra of slope traces recorded at the 
center of two facets with different size (Figures 2f and 2g) at the 
same supersaturation σ = 4.0. The maximum amplitude value is 
significantly higher for the smaller crystal, while the averaged slope 
is lower in this case 0.005, compared to 0.013. 

We also compared the Fourier spectra of slope traces recorded 
simultaneously at two different locations of the facet shown in 
Figure 2f.  The first location is close to the location of layer 
generation near the facet corner, while the second is further removed 
from the layer source.  The amplitude of the slope fluctuations 
increases with the distance from layer source, while, as above, the 
averaged value of the slope decreases.  

To understand these observations, we use that the crystal size, the 
location on the facet and the supersaturation are parameters that 
strongly affect the solute supply to the interface. Hence, the observed 
dependencies of the fluctuation amplitudes with these parameters 
indicate that, similar to lysozyme (Vekilov et al., 1996), the growth 
instability is due to the coupling of the nonlinear interfacial 
processes of growth to the bulk transport in the solution.   

However, in all studies of ferritin, the dependence of the 
fluctuation amplitudes on the respective parameter is opposite to that 
for lysozyme, and may appear counterintuitive.  Thus, we would 
expect the faster growth at higher supersaturations to be more 
instable and with stronger fluctuations, we would expect the 
instabilities to evolve as the steps propagate down their pathway, and 
so on.  This last controversy provides the key to understanding the 
unsteady behavior of the step trains in ferritin growth.  Indeed, if the 
fluctuation amplitudes are dampened as the steps move on, it follows 
that the stable state, towards which the step train is converging, is the 
equidistant step train.  Along this line of thought, we must conclude 
that the step bunches are generated at the location of step generation, 
i.e., the 2D nucleation process is highly unsteady, and consist of 
spurts of nucleated layers, leading to stacks of steps, followed by 
lower activity.  The dependence of the fluctuation amplitudes on the 
supersaturation in the solution bulk suggests that the unsteady layer 
generation is caused by its coupling to the solute supply to the 
location of step generation.  This coupling makes the nucleation 
process intrinsically unstable—an increase in the layer generation 
leads to solution depletion, a strong drop in the 2D nucleation rate, 
fewer nucleated steps that allow replenished supersaturation, and so 
on.   

To test this model of nucleation caused by step bunching, we 
expended the model of coupled bulked transport and interfacial 
kinetics processes, discussed in (Lin et al., 2001) to include layer 
generation and step propagation (Lin, unpublished). The simulations 
results confirmed the suspected highly unsteady generation of layers 
at the facet edges.    

The non-uniform step generation at the facet edges produces the 
step bunches. As the steps move away from their sources towards the 
facet center, the step bunches decay.  An important factor for this 
decay is the lack of step-step interactions—such interactions are 
known to strongly destabilize the uniform step trains, and lead to 
increasing fluctuations (Vekilov et al., 1997).   

Another potential destabilizing factor could be impurity action.  
The main impurities in this system are the covalently bound ferritin 
dimers (Thomas et al., 1998). Previous work by AFM has found that 
despite their relatively high surface concentration, ~2.2 × 109 cm-2 
(Yau et al., 2001), the dimers do not affect the motion of steps (Yau 
et al., 2000b). The reason for this is that the mean distance between 
two dimer molecules adsorbed on the surface, ~200–300 nm, is 
higher than the critical 2D radius, of the order of several molecular 

diameters, i.e., 50–100 nm.  As a consequence, the dimers do not 
affect step motion, and do not enhance step bunch formation.   

Since neither of these potential destabilizing mechanisms is 
acting, the motion of steps and the evolution of the step bunches 
formed at the stage of layer generation is only affected by the 
coupled bulk transport and surface kinetics.  To identify which of the 
two coupled processes dominate the rate control, we evaluate the 
kinetic Peclet number, introduced in (Vekilov et al., 1996) as the 
ratio 

Pek = βpδ/D                                       (7) 

where D is the diffusivity of the ferritin = 3.2 × 10-7 cm2/s (Petsev et 
al., 2000), and δ is the characteristic diffusion layer thickness, 
typically of the order of 200 µm.  Using the values of b and p 
discussed above, we get Pek ≈ 1.0, i.e., ferritin growth is 
predominantly controlled by the transport in the solution.  For such 
systems, the rationale predicts higher stability at even higher relative 
weight of transport.  Thus, we should expect lower kinetic 
fluctuations at higher supersaturations, at larger crystals sizes, and at 
the facet centers.  This is in exact correspondence with the 
experimental findings discussed above. We conclude that the 
observations with ferritin support the mechanism of generation of 
the step bunches and the associated rationale for the control of the 
kinetics instabilities in layer growth systems. 
 
3.4. Spatial-temporal characteristics of the step patterns 
 
The phase-shifting technique allows reconstruction of the surface 
morphology.  Figure 5a shows the height profile along the line 
depicted in Figure 2g. The height decreases as the distance from 
layer sources increases.  The corresponding slope profile and its 
spatial Fourier spectrum are shown in Figure 5b and c, respectively. 
The wave numbers in Figure 5c are reciprocal to the corresponding 
step bunch wavelengths λ.  The maximum amplitude occurs at a 
wave number of 0.045 µm-1 corresponding to fluctuations with λmax 
 

 
Figure 5 
(a) Height and (b) local slope profiles along the line shown in Figure 2g. (c) 
Corresponding Fourier spectrum of p. The characteristic step bunch 
wavelengths λ ��are indicated in the plot.  The first amplitude in (c) 
corresponds to the overall bending of the surface seen in (b). 
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~21 µm. From the time traces measured at the location on the profile 
line at the same σ = 4.3, see Figure 4c, we determine the 
characteristic step bunch frequency fmax = 0.0016 s-1 (∆t ~ 10.7 min). 

From these two values, we can evaluate the step bunch velocity as 
vbunch ≈ λmax fmax ~ 33 nm/s.  The value of vbunch is close to the mean 
step velocity under those conditions, v ≈ 35 nm/s.  Thus, in the case 
of non-interacting steps, the step bunches move with the same 
velocity as elementary steps. 

4. Conclusions 

We have shown that under steady growth conditions, ferritin growth 
kinetics is highly unsteady and the fluctuation amplitudes reach up to 
100% of the average values of the growth rate, the step density and 
the step velocity.  The variations in the local slope indicate that the 
fluctuations reflect the dynamics of formation and evolution of step 
patterns.  The lack of correlation of the step velocity and local slope 
indicates very weak step-step interactions.  Correspondingly, the 
propagation rate of step bunches is same as the elementary step 
velocity. 

From the dependencies of the amplitude of local slope fluctuations 
on the supersaturation, crystal size and location on the facet we 
conclude that the unsteady growth is the result of the coupling 
between solute transport towards the interface and the nonlinear 
interfacial kinetics. The main factor introducing non-linearity onto 
the interfacial kinetics is the generation of layers via a 2D nucleation 
mechanism, with its suspected exponential dependence on the 
supersaturation.  We find that the fluctuation amplitude decreases 
with increasing distance from the layer sources. Hence, for non-
interacting steps growing under diffusion control the step bunches 
decay and the step train tends towards its stable, equidistant state.   

These findings in a transport-controlled system provide a strong 
support to the rationale for the control of the step bunching 
instabilities in layer growth systems that was previously based only 
on observations with a kinetically controlled system.   
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